Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(49): e2208707119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36445968

RESUMO

Pathogenic variants in the Retinitis pigmentosa GTPase regulator (RPGR) gene lead to a clinically severe form of X-linked retinal dystrophy. However, it remains unclear why some variants cause a predominant rod, while others result in a cone-dominated phenotype. Post-translational glutamylation of the photoreceptor-specific RPGRORF15 isoform by the TTLL5 enzyme is essential for its optimal function in photoreceptors, and loss of TTLL5 leads to retinal dystrophy with a cone phenotype. Here we show that RPGR retinal disease, studied in a single cohort of 116 male patients, leads to a clear progressive shift from rod- to cone-dominating phenotype as the RPGRORF15 variant location approaches the distal part of the Open Reading Frame 15 (ORF15) region. The rod photoreceptor involvement on the contrary diminishes along the RGPR sequence, and the variants associated with the cone only phenotype are located predominantly in the very distal part, including the C-terminal basic domain. Moreover, these distal truncating RPGRORF15 variants disrupt the interaction with TTLL5 and lead to a significant impairment of RPGR glutamylation. Thus, consistent with the phenotype of TTLL5 pathogenic variants, our study shows that RPGRORF15 variants, which disrupt its basic domain and the interaction with TTLL5, also impair RPGR glutamylation and lead to the cone phenotype. This has implications for ongoing gene therapy clinical trials where the application of RPGR with impaired glutamylation may be less effective in treating RGPR dystrophies and may even convert a rod-cone dystrophy into a cone dystrophy phenotype.


Assuntos
Distrofias de Cones e Bastonetes , Distrofias Retinianas , Humanos , Masculino , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/fisiologia , Fenótipo , Células Fotorreceptoras Retinianas Cones/metabolismo , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Ácido Glutâmico/metabolismo
2.
Dis Markers ; 2021: 6803510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603560

RESUMO

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently the most significant public health threat worldwide. Patients with severe COVID-19 usually have pneumonia concomitant with local inflammation and sometimes a cytokine storm. Specific components of the SARS-CoV-2 virus trigger lung inflammation, and recruitment of immune cells to the lungs exacerbates this process, although much remains unknown about the pathogenesis of COVID-19. Our study of lung type II pneumocyte cells (A549) demonstrated that ORF7, an open reading frame (ORF) in the genome of SARS-CoV-2, induced the production of CCL2, a chemokine that promotes the chemotaxis of monocytes, and decreased the expression of IL-8, a chemokine that recruits neutrophils. A549 cells also had an increased level of IL-6. The results of our chemotaxis Transwell assay suggested that ORF7 augmented monocyte infiltration and reduced the number of neutrophils. We conclude that the ORF7 of SARS-CoV-2 may have specific effects on the immunological changes in tissues after infection. These results suggest that the functions of other ORFs of SARS-CoV-2 should also be comprehensively examined.


Assuntos
COVID-19/metabolismo , Quimiotaxia , Monócitos/patologia , Neutrófilos/patologia , Fases de Leitura Aberta/fisiologia , Pneumonia/patologia , Proteínas Virais/metabolismo , Células A549 , Quimiocina CCL2/metabolismo , Humanos , Técnicas In Vitro , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pneumonia/imunologia , Pneumonia/metabolismo , SARS-CoV-2/metabolismo , Proteínas Virais/genética
3.
Parasitology ; 148(11): 1277-1287, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34099078

RESUMO

During their complex life cycles, the Apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii employ several layers of regulation of their gene expression. One such layer is mediated at the level of translation through upstream open reading frames (uORFs). As uORFs are found in the upstream regions of a majority of transcripts in both the parasites, it is essential that their roles in translational regulation be appreciated to a greater extent. This review provides a comprehensive summary of studies that show uORF-mediated gene regulation in these parasites and highlights examples of clinically and physiologically relevant genes, including var2csa in P. falciparum, and ApiAT1 in T. gondii, that exhibit uORF-mediated regulation. In addition to these examples, several studies that use bioinformatics, transcriptomics, proteomics and ribosome profiling also indicate the possibility of widespread translational regulation by uORFs. Further analysis of these genome-wide datasets, taking into account uORFs associated with each gene, will reveal novel genes involved in key biological pathways such as cell-cycle progression, stress-response and pathogenicity. The cumulative evidence from studies presented in this review suggests that uORFs will play crucial roles in regulating gene expression during clinical disease caused by these important human pathogens.


Assuntos
Fases de Leitura Aberta/fisiologia , Plasmodium falciparum/fisiologia , Biossíntese de Proteínas/fisiologia , Toxoplasma/fisiologia , Regulação da Expressão Gênica , Malária Falciparum/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia
4.
J Chin Med Assoc ; 84(5): 478-484, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33883466

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues the pandemic spread of the coronavirus disease 2019 (COVID-19), over 60 million people confirmed infected and at least 1.8 million dead. One of the most known features of this RNA virus is its easiness to be mutated. In late 2020, almost no region of this SARS-CoV-2 genome can be found completely conserved within the original Wuhan coronavirus. Any information of the SARS-CoV-2 variants emerged through as time being will be evaluated for diagnosis, treatment, and prevention of COVID-19. METHODS: We extracted more than two million data of SARS-CoV-2 infected patients from the open COVID-19 dashboard. The sequences of the 38-amino acid putative open reading frame 10 (Orf10) protein within infected patients were gathered output through from National Center for Biotechnology Information and the mutation rates in each position were analyzed and presented in each month of 2020. The mutation rates of A8 and V30 within Orf10 are displayed in selected counties: United States, India, German, and Japan. RESULTS: The numbers of COVID-19 patients are correlated to the death numbers, but not with the death rates (stable and <3%). The amino acid positions locating at A8(F/G/L), I13, and V30(L) within the Orf10 sequence stay the highest mutation rate; N5, N25, and N36 rank at the lowest one. A8F expressed highly dominant in Japan (over 80%) and German (around 40%) coming to the end of 2020, but no significant finding in other countries. CONCLUSION: The results demonstrate via mutation analysis of Orf10 can be further combined with advanced tools such as molecular simulation, artificial intelligence, and biosensors that can practically revealed for protein interactions and thus to imply the authentic Orf10 function of SARS-CoV-2 in the future.


Assuntos
COVID-19/mortalidade , Mutação , Fases de Leitura Aberta/genética , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Fases de Leitura Aberta/fisiologia
5.
J Bacteriol ; 203(2)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33077634

RESUMO

Previous work identified gene product 56 (gp56), encoded by the lytic bacteriophage SP01, as being responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here, we show that expression of the predicted 9.3-kDa gp56 of SP01 inhibits later stages of B. subtilis cell division without altering FtsZ ring assembly. Green fluorescent protein-tagged gp56 localizes to the membrane at the site of division. While its localization does not interfere with recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analyses suggest that gp56 localization and activity depend on its interaction with FtsL. Together, these data support a model in which gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCE Studies over the past decades have identified bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. The phage factors causing cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanisms of several phage factors that inhibit cytokinesis, including gp56 of bacteriophage SP01 of Bacillus subtilis, remain unexplored. Here, we show that, unlike other published examples of phage inhibition of cytokinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and to block recruitment of proteins needed for septal cell wall synthesis.


Assuntos
Fagos Bacilares/química , Bacillus subtilis/virologia , Proteínas de Bactérias/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Fagos Bacilares/genética , Bacillus subtilis/citologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Contagem de Células , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas de Fluorescência Verde , Substâncias Luminescentes , Fases de Leitura Aberta/fisiologia , Células-Tronco/citologia
6.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967952

RESUMO

Although astroviruses causes enteric diseases and encephalitis in humans and nephritis and hepatitis in poultry, astrovirus infection is thought to be self-limiting. However, little is known about its molecular mechanism. In this study, we found that a novel goose astrovirus (GAstV), GAstV-GD, and its open reading frame 2 (ORF2) could efficiently activate the innate immune response and induce a high level of OASL in vitro and in vivo The truncation assay for ORF2 further revealed that the P2 domain of ORF2 contributed to stimulating OASL, whereas the acidic C terminus of ORF2 attenuated such activation. Moreover, the overexpression and knockdown of OASL could efficiently restrict and promote the viral replication of GAstV-GD, respectively. Our data not only give novel insights for elucidating self-limiting infection by astrovirus but also provide virus and host targets for fighting against astroviruses.IMPORTANCE Astroviruses cause gastroenteritis and encephalitis in human, and nephritis, hepatitis, and gout disease in poultry. However, the host immune response activated by astrovirus is mostly unknown. Here, we found that a novel goose astrovirus, GAstV-GD, and its ORF2 protein could efficiently induce a high level of OASL in vitro and in vivo, which could feed back to restrict the replication of GAstV-GD, revealing novel innate molecules triggered by astroviruses and highlighting that the ORF2 of GAstV-GD and OASL can be potential antiviral targets for astroviruses.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Astroviridae/efeitos dos fármacos , Gansos/virologia , Fases de Leitura Aberta/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/farmacologia , Animais , Astroviridae/genética , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Linhagem Celular , Técnicas de Silenciamento de Genes , Imunidade Inata , Cinética , Fases de Leitura Aberta/fisiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Transcriptoma , Replicação Viral/fisiologia
7.
Int J Mol Med ; 46(1): 252-264, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32377703

RESUMO

Lung squamous cell carcinoma (LSCC) is one of the primary types of non­small cell lung carcinoma, and patients with recurrent LSCC usually have a poor prognosis. The present study was conducted to build a risk score (RS) system for LSCC. Methylation data on LSCC (training set) and on head and neck squamous cell carcinoma (validation set 2) were obtained from The Cancer Genome Atlas database, and GSE39279 (validation set 1) was retrieved from the Gene Expression Omnibus database. Differentially methylated protein­coding genes (DMGs)/long non­coding RNAs (DM­lncRNAs) between recurrence­associated samples and nonrecurrence samples were screened out using the limma package, and their correlation analysis was conducted using the cor.test() function. Following identification of the optimal combinations of DMGs or DM­lncRNAs using the penalized package in R, RS systems were built, and the system with optimal performance was selected. Using the rms package, a nomogram survival model was then constructed. For the differentially expressed genes (DEGs) between the high­ and low­risk groups, pathway enrichment analysis was performed by Gene Set Enrichment Analysis. There were 335 DMGs and DM­lncRNAs in total. Following screening out of the top 10 genes (aldehyde dehydrogenase 7 family member A1, chromosome 8 open reading frame 48, cytokine­like 1, heat shock protein 90 alpha family class A member 1, isovaleryl­CoA dehydrogenase, phosphodiesterase 3A, PNMA family member 2, SAM domain, SH3 domain and nuclear localization signals 1, thyroid hormone receptor interactor 13 and zinc finger protein 878) and 6 top lncRNAs, RS systems were constructed. According to Kaplan­Meier analysis, the DNA methylation level­based RS system exhibited the best performance. In combination with independent clinical prognostic factors, a nomogram survival model was built and successfully predicted patient survival. Furthermore, 820 DEGs between the high­ and low­risk groups were identified, and 3 pathways were identified to be enriched in this gene set. The 10­DMG methylation level­based RS system and the nomogram survival model may be applied for predicting the outcomes of patients with LSCC.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Metilação de DNA/fisiologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Idoso , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Isovaleril-CoA Desidrogenase/genética , Isovaleril-CoA Desidrogenase/metabolismo , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Nomogramas , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/fisiologia , Prognóstico
8.
PLoS Pathog ; 16(5): e1008488, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433693

RESUMO

There are approximately 20 million events of hepatitis E virus (HEV) infection worldwide annually. The genome of HEV is a single-strand, positive-sense RNA containing 5' and 3' untranslated regions and three open reading frames (ORF). HEV genome has 5' cap and 3' poly(A) tail to mimic host mRNA to escape the host innate immune surveillance and utilize host translational machineries for viral protein translation. The replication mechanism of HEV is poorly understood, especially how the viral polymerase distinguishes viral RNA from host mRNA to synthesize new viral genomes. We hypothesize that the HEV genome contains cis-acting elements that can be recognized by the virally encoded polymerase as "self" for replication. To identify functional cis-acting elements systematically across the HEV genome, we utilized an ORF1 transcomplementation system. Ultimately, we found two highly conserved cis-acting RNA elements within the ORF1 and ORF2 coding regions that are required for viral genome replication in a diverse panel of HEV genotypes. Synonymous mutations in the cis-acting RNA elements, not altering the ORF1 and ORF2 protein sequences, significantly impaired production of infectious viral particles. Mechanistic studies revealed that the cis-acting elements form secondary structures needed to interact with the HEV ORF1 protein to promote HEV replication. Thus, these cis-acting elements function as a scaffold, providing a specific "signal" that recruits viral and host factors to assemble the viral replication complex. Altogether, this work not only facilitates our understanding of the HEV life cycle and provides novel, RNA-directed targets for potential HEV treatments, but also sheds light on the development of HEV as a therapeutic delivery vector.


Assuntos
Genoma Viral , Vírus da Hepatite E/fisiologia , RNA Viral , Sequências Reguladoras de Ácido Ribonucleico/fisiologia , Replicação Viral/fisiologia , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fases de Leitura Aberta/fisiologia , RNA Viral/biossíntese , RNA Viral/genética
9.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554685

RESUMO

The herpesvirus nuclear egress complex (NEC) is composed of two viral proteins. They play key roles in mediating the translocation of capsids from the nucleus to the cytoplasm by facilitating the budding of capsids into the perinuclear space (PNS). The NEC of alphaherpesvirus can induce the formation of virion-like vesicles from the nuclear membrane in the absence of other viral proteins. However, whether the NEC of gammaherpesvirus harbors the ability to do so in mammalian cells remains to be determined. In this study, we first constructed open reading frame 67 (ORF67)-null and ORF69-null mutants of murine gammaherpesvirus 68 (MHV-68) and demonstrated that both ORF67 and ORF69 play critical roles in nuclear egress and hence viral lytic replication. Biochemical and bioimaging analyses showed that ORF67 and ORF69 interacted with each other and were sufficient to induce the formation of virion-like vesicles from the nuclear membrane in mammalian cells. Thus, we designated ORF67 and ORF69 components of MHV-68 NEC. Furthermore, we identified amino acids critical for mediating the interaction between ORF67 and ORF69 through homology modeling and verified their function in nuclear egress, providing insights into the molecular basis of NEC formation in gammaherpesviruses.IMPORTANCE Increasing amounts of knowledge indicate that the nuclear egress complex (NEC) is critical for the nuclear egress of herpesvirus capsids, which can be viewed as a vesicle-mediated transport pathway through the nuclear membrane. In this study, we identified open reading frame 67 (ORF67) and ORF69 as components of the NEC in murine gammaherpesvirus 68 (MHV-68) and demonstrated that they efficiently induce virion-like vesicles from the nuclear membrane in mammalian cells. This is the first time that the NEC of a gammaherpesvirus has been found to demonstrate such an essential characteristic. In addition, we identified amino acids critical for mediating the interaction between ORF67 and ORF69 as well as nuclear egress. Notably, these amino acids are conserved in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), providing a structural basis to design antigammaherpesvirus drugs.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Gammaherpesvirinae/metabolismo , Infecções por Herpesviridae/metabolismo , Fases de Leitura Aberta/fisiologia , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/metabolismo , Animais , Capsídeo/metabolismo , Citoplasma/virologia , DNA Viral , Gammaherpesvirinae/genética , Células HEK293 , Células HeLa , Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Humanos , Mutação com Perda de Função , Camundongos , Membrana Nuclear/metabolismo , Fases de Leitura Aberta/genética , Vírion/metabolismo , Replicação Viral
10.
Viruses ; 11(8)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390784

RESUMO

Hepatitis E virus (HEV) is a small quasi-enveloped, (+)-sense, single-stranded RNA virus belonging to the Hepeviridae family. There are at least 20 million HEV infections annually and 60,000 HEV-related deaths worldwide. HEV can cause up to 30% mortality in pregnant women and progress to liver cirrhosis in immunocompromised individuals and is, therefore, a greatly underestimated public health concern. Although a prophylactic vaccine for HEV has been developed, it is only licensed in China, and there is currently no effective, non-teratogenic treatment. HEV encodes three open reading frames (ORFs). ORF1 is the largest viral gene product, encoding the replicative machinery of the virus including a methyltransferase, RNA helicase, and an RNA-dependent RNA polymerase. ORF1 additionally contains a number of poorly understood domains including a hypervariable region, a putative protease, and the so-called 'X' and 'Y' domains. ORF2 is the viral capsid essential for formation of infectious particles and ORF3 is a small protein essential for viral release. In this review, we focus on the domains encoded by ORF1, which collectively mediate the virus' asymmetric genome replication strategy. We summarize what is known, unknown, and hotly debated regarding the coding and non-coding regions of HEV ORF1, and present a model of how HEV replicates its genome.


Assuntos
Vírus da Hepatite E/fisiologia , Fases de Leitura Aberta/fisiologia , Replicação Viral , Genoma Viral , Hepatite E/virologia , Vírus da Hepatite E/genética , Humanos , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Nitric Oxide ; 88: 50-60, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004763

RESUMO

The human inducible nitric oxide synthase (iNOS) gene contains an upstream open reading frame (uORF) in its 5'-untranslated region (5'-UTR) implying a translational regulation of iNOS expression. Transfection experiments in human DLD-1 cells revealed that the uORF although translatable seems not to inhibit the translation start at the bona fide ATG. Our data clearly show that human iNOS translation is cap-dependent and that the 5'-UTR of the iNOS mRNA contains no internal ribosome entry site. Translation of the bona fide coding sequence is most likely mediated by a leaky scanning mechanism. The 5'-UTR is encoded by exon 1 and exon 2 of the iNOS gene with the uORF stop codon located in front of the first intron indicating an involvement of the nonsense mediated RNA decay (NMD) in iNOS regulation. SiRNA-mediated down-regulation of Upf1 resulted in enhanced endogenous cytokine iNOS expression in human DLD-1 cells. Transfection of constructs containing iNOS exon 1, intron 1 and exon 2 in front of a luciferase gene showed a clear effect of the mutation of the uORF-ATG on luciferase reportergene expression. Our data indicate that the uORF in the 5'-UTR sequence of human iNOS gene reduces its expression via the NMD mechanism.


Assuntos
Regulação da Expressão Gênica/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fases de Leitura Aberta/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo , Éxons , Humanos , Íntrons , Mutação , Óxido Nítrico Sintase Tipo II/genética , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/genética , Transativadores/metabolismo
12.
Nat Microbiol ; 4(2): 280-292, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30478287

RESUMO

Enteroviruses comprise a large group of mammalian pathogens that includes poliovirus. Pathology in humans ranges from sub-clinical to acute flaccid paralysis, myocarditis and meningitis. Until now, all of the enteroviral proteins were thought to derive from the proteolytic processing of a polyprotein encoded in a single open reading frame. Here we report that many enterovirus genomes also harbour an upstream open reading frame (uORF) that is subject to strong purifying selection. Using echovirus 7 and poliovirus 1, we confirmed the expression of uORF protein in infected cells. Through ribosome profiling (a technique for the global footprinting of translating ribosomes), we also demonstrated translation of the uORF in representative members of the predominant human enterovirus species, namely Enterovirus A, B and C. In differentiated human intestinal organoids, uORF protein-knockout echoviruses are attenuated compared to the wild-type at late stages of infection where membrane-associated uORF protein facilitates virus release. Thus, we have identified a previously unknown enterovirus protein that facilitates virus growth in gut epithelial cells-the site of initial viral invasion into susceptible hosts. These findings overturn the 50-year-old dogma that enteroviruses use a single-polyprotein gene expression strategy and have important implications for the understanding of enterovirus pathogenesis.


Assuntos
Infecções por Enterovirus/virologia , Enterovirus/genética , Enterovirus/patogenicidade , Mucosa Intestinal/virologia , Fases de Leitura Aberta/fisiologia , Proteínas Virais/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Enterovirus/classificação , Expressão Gênica , Técnicas de Inativação de Genes , Genoma Viral/genética , Humanos , Mutação , Fases de Leitura Aberta/genética , Organoides/virologia , Filogenia , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Seleção Genética , Proteínas Virais/genética , Liberação de Vírus
13.
Proc Natl Acad Sci U S A ; 115(30): 7831-7836, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29915080

RESUMO

Plants adapt to alterations in light conditions by controlling their gene expression profiles. Expression of light-inducible genes is transcriptionally induced by transcription factors such as HY5. However, few detailed analyses have been carried out on the control of transcription start sites (TSSs). Of the various wavelengths of light, it is blue light (BL) that regulates physiological responses such as hypocotyl elongation and flowering time. To understand how gene expression is controlled not only by transcript abundance but also by TSS selection, we examined genome-wide TSS profiles in Arabidopsis seedlings after exposure to BL irradiation following initial growth in the dark. Thousands of genes use multiple TSSs, and some transcripts have upstream ORFs (uORFs) that take precedence over the main ORF (mORF) encoding proteins. The uORFs often function as translation inhibitors of the mORF or as triggers of nonsense-mediated mRNA decay (NMD). Transcription from TSSs located downstream of the uORFs in 220 genes is enhanced by BL exposure. This type of regulation is found in HY5 and HYH, major regulators of light-dependent gene expression. Translation efficiencies of the genes showing enhanced usage of these TSSs increased upon BL exposure. We also show that transcripts from TSSs upstream of uORFs in 45 of the 220 genes, including HY5, accumulated in a mutant of NMD. These results suggest that BL controls gene expression not only by enhancing transcriptions but also by choosing the TSS, and transcripts from downstream TSSs evade uORF-mediated inhibition to ensure high expression of light-regulated genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Proteínas Nucleares/genética
14.
Appl Microbiol Biotechnol ; 102(16): 6841-6845, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29909570

RESUMO

A large number of DNAs in eukaryote genomes can code for atypical transcripts, and their functions are controversial. It has been reported that the transcripts contain many small open reading frames (sORFs), which were originally considered as non-translatable RNAs. However, increasing evidence has suggested that some of these sORFs can encode for small peptides and some are conserved across large evolutionary distances. It has been reported that the small peptides have functions and may be involved in varieties of cellular processes, playing important roles in development, physiology, and metabolism. Among the sORFs, studies of the non-canonical gene polished rice/tarsal-less (pri/tal) in Drosophila and mille-pattes(mlpt) in Tribolium have been more thoroughly studied. The genes similar to pri/tal in other species have been defined as the tarsal-less-related gene family, tal-like gene. In this review, we described recent progress in the discovery and functional characterization of the small peptides encoded by the tal-like gene and their possible functional potentials.


Assuntos
Proteínas de Drosophila/genética , Fases de Leitura Aberta/genética , Fases de Leitura Aberta/fisiologia , Peptídeos/fisiologia , Transaldolase/genética , Animais
15.
Neurobiol Dis ; 117: 203-210, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29908326

RESUMO

Mitochondrial encephalomyopathies (MEs) result from mutations in mitochondrial genes critical to oxidative phosphorylation. Severe and untreatable ME results from mutations affecting each endogenous mitochondrial encoded gene, including all 13 established protein coding genes. Effective techniques to manipulate mitochondrial genome are limited and targeted mitochondrial protein expression is currently unavailable. Here we report the development of a mitochondrial-targeted RNA expression (mtTRES) vector capable of protein expression within mitochondria (mtTRESPro). We demonstrate that mtTRESPro expressed RNAs are targeted to mitochondria and are capable of being translated using EGFP encoded constructs in vivo. We additionally test mtTRESPro constructs encoding wild type ATP6 for their ability to rescue an established ATP61Drosophila model of ME. Genetic rescue is examined including tests with co-expression of mitochondrial targeted translational inhibitors TLI-NCL::ATP6 RNAs that function to reduce expression of the endogenous mutant protein. The data demonstrate allotopic RNA expression of mitochondrial targeted wild type ATP6 coding RNAs are sufficient to partially rescue a severe and established animal model of ME but only when combined with a method to inhibit mutant protein expression, which likely competes for incorporation into complex V.


Assuntos
Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Fases de Leitura Aberta/fisiologia , RNA Mitocondrial/genética , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila , Células HeLa , Humanos , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mitocondrial/metabolismo
16.
Sci Rep ; 8(1): 6824, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717174

RESUMO

Global shortening of 3'UTRs by alternative polyadenylation (APA) has been observed in cancer cells. However, the role of APA in cancer remains unknown. CCND1 is a proto-oncogene that regulates progression through the G1-S phase of the cell cycle; moreover, it has been observed to be switching to proximal APA sites in cancer cells. To investigate the biological function of the APA of CCND1, we edited the weak poly(A) signal (PAS) of the proximal APA site to a canonical PAS using the CRISPR/Cas9 method, which can force the cells to use a proximal APA site. Cell cycle profiling and proliferation assays revealed that the proximal APA sites of CCND1 accelerated the cell cycle and promoted cell proliferation, but UTR-APA and CR-APA act via different molecular mechanisms. These results indicate that PAS editing with CRISPR/Cas9 provides a good method by which to study the biological function of APA.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Ciclina D1/metabolismo , Poliadenilação/fisiologia , Regiões 3' não Traduzidas/fisiologia , Sistemas CRISPR-Cas/fisiologia , Proliferação de Células/fisiologia , Ciclina D1/genética , Loci Gênicos , Vetores Genéticos , Células HEK293 , Humanos , Mutação , Fases de Leitura Aberta/fisiologia , Poli A/metabolismo , Isoformas de Proteínas/metabolismo , Proto-Oncogene Mas , RNA Mensageiro/metabolismo , Regiões não Traduzidas/fisiologia
17.
Cell Prolif ; 51(1)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29226462

RESUMO

OBJECTIVES: When rat chloroleukaemia (CHL) cells are grown undisturbed in a confined space, a genomic long interspersed nuclear element (LINE) is transcriptionally activated at a relatively low population density, followed by the retrotransposition of LINE and population death. This death programme is fundamentally different from conventional cell death pathways. MATERIALS AND METHODS: This work is essentially based on the re-analysis of relevant, old experimental data. Elemental analysis of a highly purified, long-stored inhibitor sample was performed. Genomic sequence searches were performed using the basic local alignment search tool (BLAST). RESULTS: This death programme is initiated by an endogenous inhibitor secreted by CHL cells. The inhibitor is almost certainly identical to the pentapeptide pyroGlu-Glu-Asp-Cys-Lys, shown to be a cell line-specific inhibitor of normal granulocytic cells. The inhibitor is derived from a highly conserved short open reading frame in mammalian genomes. CONCLUSIONS: Although spontaneous population death may be a biological oddity restricted to rat CHL cells, we suggest that this death programme is responsible for the eradication of cancer cells following treatment with an inhibitor administered exogenously.


Assuntos
Inibidores do Crescimento/metabolismo , Leucemia/patologia , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Animais , Contagem de Células/métodos , Morte Celular , Linhagem Celular Tumoral , Dipeptídeos/metabolismo , Leucemia/metabolismo , Oligopeptídeos/metabolismo , Fases de Leitura Aberta/fisiologia , Ratos
18.
J Proteome Res ; 17(1): 1-11, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29188713

RESUMO

Peptides encoded by short open reading frames (sORFs) are usually defined as peptides ≤100 aa long. Usually sORFs were ignored by automatic genome annotation programs due to the high probability of false discovery. However, improved computational tools along with a high-throughput RIBO-seq approach identified a myriad of translated sORFs. Their importance becomes evident as we are gaining experimental validation of their diverse cellular functions. This Review examines various computational and experimental approaches of sORFs identification as well as provides the summary of our current knowledge of their functional roles in cells.


Assuntos
Fases de Leitura Aberta/genética , Peptídeos/genética , Mineração de Dados/métodos , Fases de Leitura Aberta/fisiologia , Peptídeos/fisiologia
19.
Dev Biol ; 434(1): 96-107, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29208373

RESUMO

In early zebrafish development, the program for dorsal axis formation begins soon after fertilization. Previous studies suggested that dorsal determinants (DDs) localize to the vegetal pole, and are transported to the dorsal blastomeres in a microtubule-dependent manner. The DDs activate the canonical Wnt pathway and induce dorsal-specific genes that are required for dorsal axis formation. Among wnt-family genes, only the wnt8a mRNA is reported to localize to the vegetal pole in oocytes and to induce the dorsal axis, suggesting that Wnt8a is a candidate DD. Here, to reveal the roles of maternal wnt8a, we generated wnt8a mutants by transcription activator-like effector nucleases (TALENs), and established zygotic, maternal, and maternal zygotic wnt8a mutants by germ-line replacement. Zebrafish wnt8a has two open reading frames (ORF1 and ORF2) that are tandemly located in the genome. Although the zygotic ORF1 or ORF2 wnt8a mutants showed little or no axis-formation defects, the ORF1/2 compound mutants showed antero-dorsalized phenotypes, indicating that ORF1 and ORF2 have redundant roles in ventrolateral and posterior tissue formation. Unexpectedly, the maternal wnt8a ORF1/2 mutants showed no axis-formation defects. The maternal-zygotic wnt8a ORF1/2 mutants showed more severe antero-dorsalized phenotypes than the zygotic mutants. These results indicated that maternal wnt8a is dispensable for the initial dorsal determination, but cooperates with zygotic wnt8a for ventrolateral and posterior tissue formation. Finally, we re-examined the maternal wnt genes and found that Wnt6a is an alternative candidate DD.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Embrião não Mamífero/embriologia , Fases de Leitura Aberta/fisiologia , RNA Mensageiro/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Proteínas do Citoesqueleto/genética , RNA Mensageiro/genética , Proteínas Wnt/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
20.
J Biol Chem ; 292(23): 9613-9626, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28432120

RESUMO

Chemokines are essential for antimicrobial host defenses and tissue repair. Herpesviruses and poxviruses also encode chemokines, copied from their hosts and repurposed for multiple functions, including immune evasion. The CC chemokine MCK-2 encoded by mouse CMV (MCMV) has an atypical structure consisting of a classic chemokine domain N-terminal to a second unique domain, resulting from the splicing of MCMV ORFs m131 and m129 MCK-2 is essential for full MCMV infectivity in macrophages and for persistent infection in the salivary gland. However, information about its mechanism of action and specific biochemical roles for the two domains has been lacking. Here, using genetic, chemical, and enzymatic analyses of multiple mouse cell lines as well as primary mouse fibroblasts from salivary gland and lung, we demonstrate that MCK-2 binds glycosaminoglycans (GAGs) with affinities in the following order: heparin > heparan sulfate > chondroitin sulfate = dermatan sulfate. Both MCK-2 domains bound these GAGs independently, and computational analysis together with site-directed mutagenesis identified five basic residues distributed across the N terminus and the 30s and 50s loops of the chemokine domain that are important GAG binding determinants. Both domains were required for GAG-dependent oligomerization of full-length MCK-2. Thus, MCK-2 is an atypical viral chemokine consisting of a CC chemokine domain and a unique non-chemokine domain, both of which bind GAGs and are critical for GAG-dependent oligomerization of the full-length protein.


Assuntos
Quimiocinas CC/química , Quimiocinas CC/metabolismo , Muromegalovirus/química , Muromegalovirus/metabolismo , Multimerização Proteica/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Animais , Quimiocinas CC/genética , Glicosaminoglicanos/química , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Camundongos , Muromegalovirus/genética , Células NIH 3T3 , Fases de Leitura Aberta/fisiologia , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...